

Vectors and Transforms

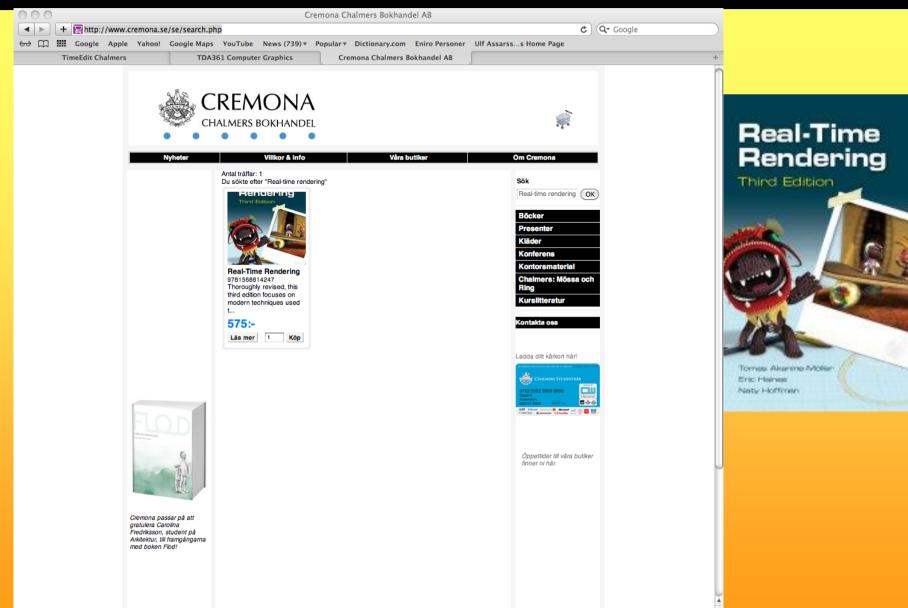
In 3D Graphics

Change of Lecture Room

- Week 2:
 - Wed 2/11: HC1
 - Fri 4/11: HA1
- Thereafter HC1 all times except:
 - Week 5: Fri: HC3
 - Week 7: Fri: HC3

CHALMERS

Department of Computer Engineering



Tutorials

- Will start on Monday
- Rooms 4211/13/15/20
- Schedule
 - Mon to Fri: 17-21
 - Thurs + Friday, also: 13-17
- You can do the tutorials at home and just present here when course assistants are available.

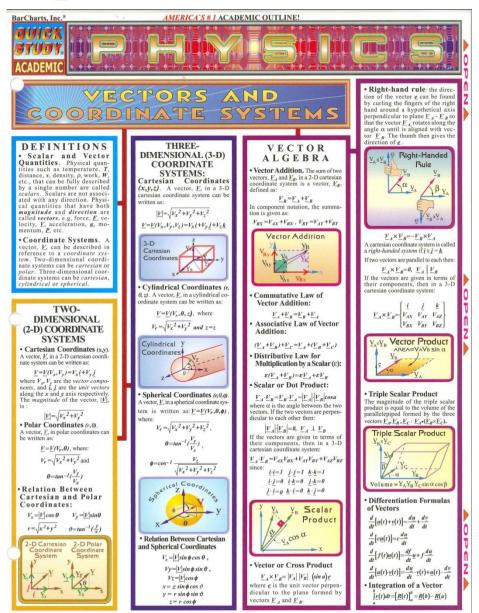
Course assistants are available:

- Wednesdays: 17:00 19:00
- Thursdays: 13:00 17:00
- Fridays: 13:00 17:00

Tutorial Groups

- Work alone or in pairs
 - In break if you do not already have lab-partner (or not working alone):
 - Sign up list here at desk!

Quick Repetition of Vector Algebra



Reading instructions

VERY IMPORTANT

- READ HOME PAGE in connection to each lecture
- COURSE HOME PAGE is located here: http://www.cse.chalmers.se/edu/course/TDA361/

COURSE HOME PAGE

Why transforms?

 We want to be able to animate objects and the camera

- Translations
- Rotations
- Shears
- And more...

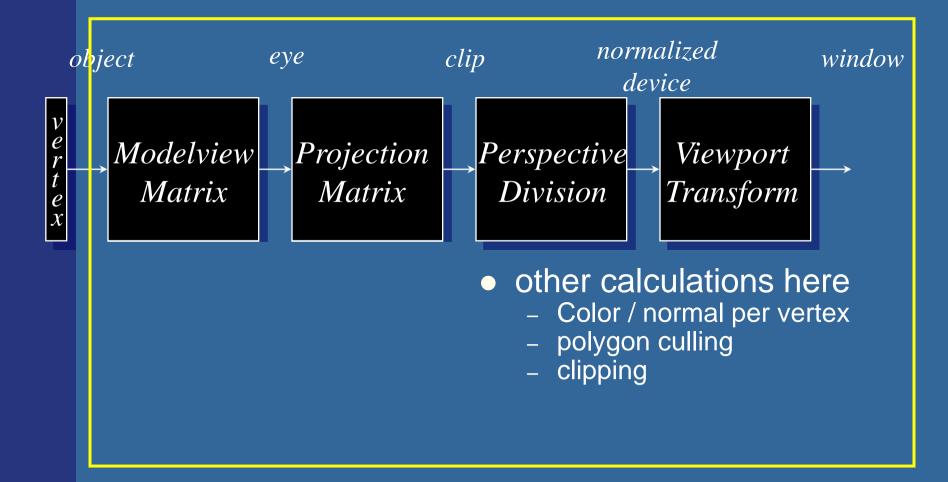
We want to be able to use projection transforms

How implement transforms?

- Matrices!
- Can you really do everything with a matrix?
- Not everything, but a lot!
 We use 3x3 and 4x4 matrices

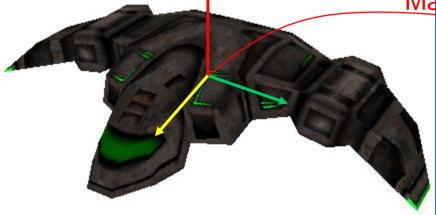
$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix}$$

Transformation Pipeline



OpenGL | Geometry stage | done on GPU

Model to World Matrix



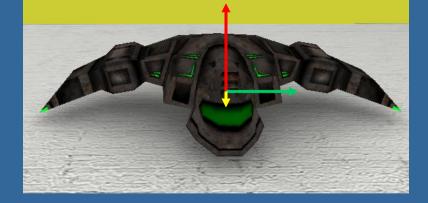
Model space

Word space

World to View Matrix

camera

ModelViewMtx = Model to View Matrix



View space

The OpenGL Pipeline

From http://deltronslair.com/glpipe.html

How do I use transforms practically?

 Say you have a circle with origin at (0,0,0) and with radius 1 – unit circle

- Mtx4f m;
- m.translate(8,0,0);
- RenderCircle(m);
- Mtx4f s,t;
- s.scale(2,2,2);
- t.translate(3,2,0);
- RenderCircle(t*s);

 $v_transformed = t^*s^*v$

Cont'd from previous slide A simple 2D example

• A circle in model space

scale(2,2,2);
translate(3,2,0);

translate(8,0,0);

Tomas Akenine-Mőller © 2002

X

Cont'd from previous slide A simple 2D example

• A circle in model space

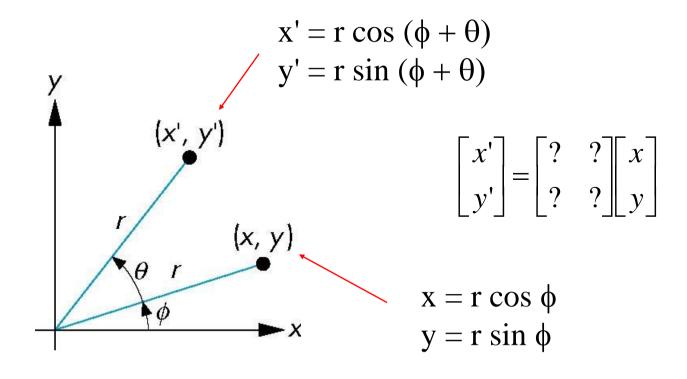
translate(3,2,0);
scale(2,2,2);
(i.e., m=s*t)

X

Moving an object

Rotation (2D)

Consider rotation about the origin by θ degrees –radius stays the same, angle increases by θ



Answer: $x'=x \cos \theta - y \sin \theta$ $y'=x \sin \theta + y \cos \theta$

Derivation of rotation matrix in 2D

$$\mathbf{n} = \mathbf{R}_{z} \mathbf{p}?$$

$$\mathbf{p} = re^{i\phi} = r(\cos\phi + i\sin\phi) \text{ [rotation is mult by } e^{i\alpha}\text{]}$$

$$\mathbf{n} = e^{i\alpha} p = re^{i\alpha}e^{i\phi} =$$

$$= r[(\cos\alpha + i\sin\alpha)(\cos\phi + i\sin\phi)] =$$

$$= r(\cos\alpha\cos\phi - \sin\alpha\sin\phi) +$$

$$ir(\cos\alpha\sin\phi + \sin\alpha\cos\phi)$$

$$\mathbf{p} = (p_x, p_y)^T = (r\cos\phi, r\sin\phi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = (r(\cos\alpha\cos\phi - \sin\alpha\sin\phi),$$

$$r(\cos\alpha\sin\phi + \sin\alpha\cos\phi))^T$$

Derivation 2D rotation, cont^rd

$$\mathbf{p} = (p_x, p_y)^T = (r \cos \varphi, r \sin \varphi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = (r (\cos \alpha \cos \phi + \sin \alpha \sin \phi),$$

$$r (\sin \alpha \cos \phi + \cos \alpha \sin \phi))^T$$

$$\mathbf{n} = \mathbf{R}_z \mathbf{p} \quad \text{what is } \mathbf{R}_z?$$

$$\binom{n_x}{n_y} = (\frac{\cos \alpha}{\sin \alpha} - \frac{\sin \alpha}{\cos \alpha} \frac{p_x}{p_y})$$

$$\mathbf{R}_z$$

Rotations in 3D Same as in 2D for Z-rotations, but with a 3x3 matrix $\mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \Rightarrow \mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $(1 \quad 0$ 0 • For X

• For Y

$$\mathbf{R}_{x}(\alpha) = \begin{bmatrix} 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
$$\mathbf{R}_{y}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

Translations must be simple?

Translation Rotation $\begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix}$ $\mathbf{p} = \mathbf{p} + \mathbf{t}$ $\mathbf{n} = \mathbf{R}\mathbf{p}$

Rotation is matrix mult, translation is add
Would be nice if we could only use matrix multiplications...

Turn to homogeneous coordinates
Add a new component to each vector

Homogeneous notation • A point: $\mathbf{p} = (p_x \quad p_y \quad p_z \quad 1)^T$ Translation becomes: $\begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{pmatrix}$ $\dot{\mathbf{T}(t)}$ • A vector (direction): $\mathbf{d} = \begin{pmatrix} d_x & d_y & d_z & 0 \end{pmatrix}^T$ • Translation of vector: Td = d

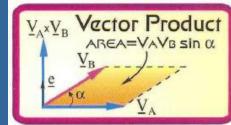
• Also allows for projections (later)

Rotations in 4x4 form

Just add a row at the bottom, and a column at the right:

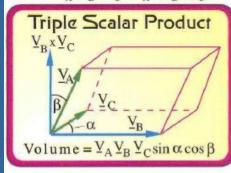
$\mathbf{R}_{z}(\alpha) =$	$(\cos \alpha)$	$-\sin \alpha$	0	0)
	$\sin \alpha$	$\cos \alpha$	0	0
	0	0	1	0
	0	0	0	1)

Similarly for X and Y



Triple Scalar Product

The magnitude of the triple scalar product is equal to the volume of the parallelepiped formed by the three vectors V_A , V_B , V_C : $V_A \cdot (V_B \times V_C)$.

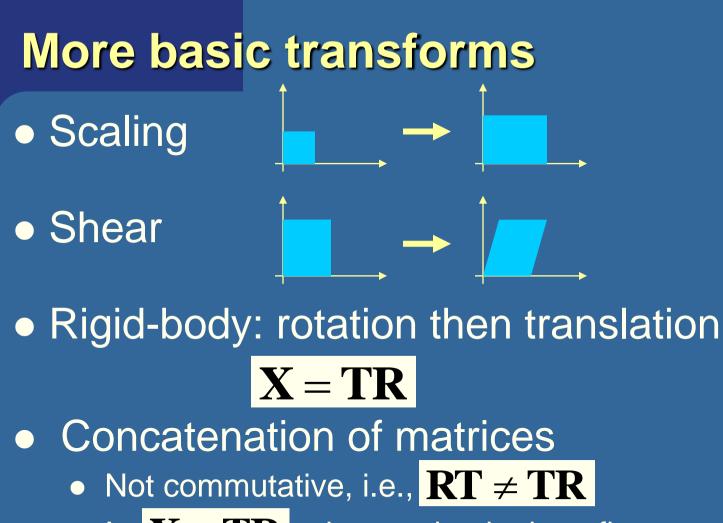


det(R)=1 (for 3x3 matrices)
 Trace(R)=1+2cos(alpha) (for any axis,3x3)

$$M_{\text{model-to-world}}: \qquad P = (0,5,0,1) \bullet$$

$$M_{\text{model-to-world}} = \begin{bmatrix} a_x & b_x & c_x & o_x \\ a_y & b_y & c_y & o_y \\ a_z & b_z & c_z & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{\text{Were for a state of the set of the set$$

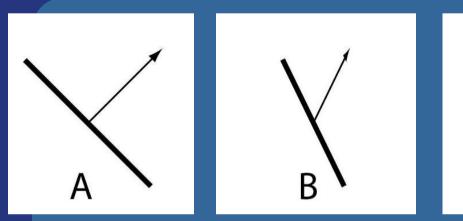
E.g.: $\mathbf{p}_{\text{world}} = \mathbf{M}_{\text{m}\to\text{w}} \, \mathbf{p}_{\text{model}} = \mathbf{M}_{\text{m}\to\text{w}} \, (0,5,0)^{\text{T}} = 5 \, \mathbf{b} \, (+ \mathbf{0})$

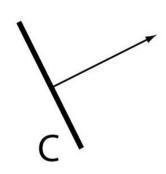


• In X = TR, the rotation is done first

Inverses and rotation about arbitrary axis:
 Rigid body: X⁻¹ = X^T

Normal transforms Not so normal...





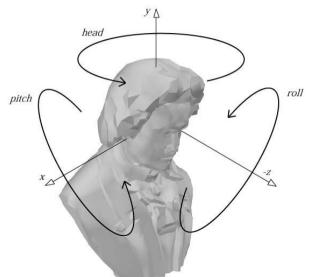
• Cannot use same matrix to transform normals

Use: $\mathbf{N} = (\mathbf{M}^{-1})^T$ instead of \mathbf{M}

• M works for rotations and translations, though

The Euler Transform

 Assume the view looks down the negative z-axis, with up in the y-direction, x to the right



$\mathbf{E}(h, p, r) = \mathbf{R}_{z}(r)\mathbf{R}_{x}(p)\mathbf{R}_{y}(h)$

- *h*=head
- *p*=pitch
- *r*=roll

We should apply the rotation transforms to the rotation axes as well

- Gimbal lock can occur looses one degree of freedom
- Example: h=0,p=π/2, then the z-rotation is the same as doing a previous rot around y-axis 2002

Quaternions

$$\hat{\mathbf{q}} = (\mathbf{q}_v, q_w) = (q_x, q_y, q_z, q_w)$$

$$= iq_x + jq_y + kq_z + q_w$$

- Extension of imaginary numbers
- Avoids gimbal lock that the Euler could produce

• Focus on unit quaternions: $n(\hat{\mathbf{q}}) = q_x^2 + q_y^2 + q_z^2 + q_w^2 = 1$

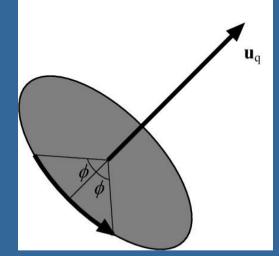
• A unit quaternion is:

$$\hat{\mathbf{q}} = (\sin \phi \mathbf{u}_q, \cos \phi) \text{ where } \| \mathbf{u}_q$$

|=1

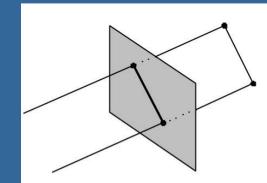
Unit quaternions are perfect for rotations! $\hat{\mathbf{q}} = (\sin \phi \mathbf{u}_a, \cos \phi)$

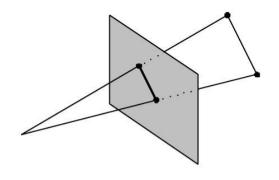
- Compact (4 components)
- Can show that $\hat{\mathbf{q}}\hat{\mathbf{p}}\hat{\mathbf{q}}^{-1}$
- ...represents a rotation of
 2φ radians around uq of p

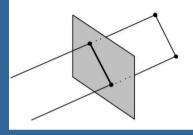


- That is: a unit quaternion represent a rotation as a rotation axis and an angle
- rotate(ux,uy,uz,angle);
- Interpolation from one quaternion to another is much simpler, and gives optimal results

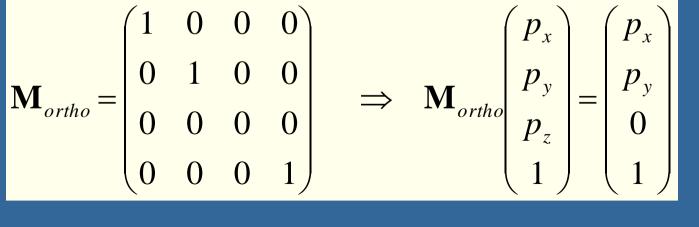
Projections Orthogonal (parallel) and Perspective



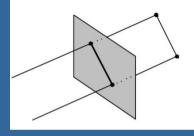




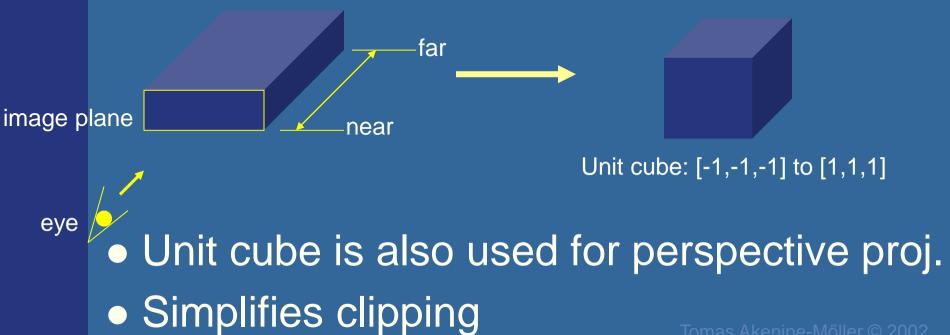
Orthogonal projection Simple, just skip one coordinate Say, we're looking along the z-axis Then drop z, and render

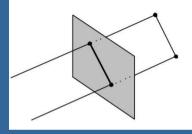


Ζ



Orthogonal projection Not invertible! (determinant is zero) For Z-buffering It is not sufficient to project to a plane Rather, we need to "project" to a box

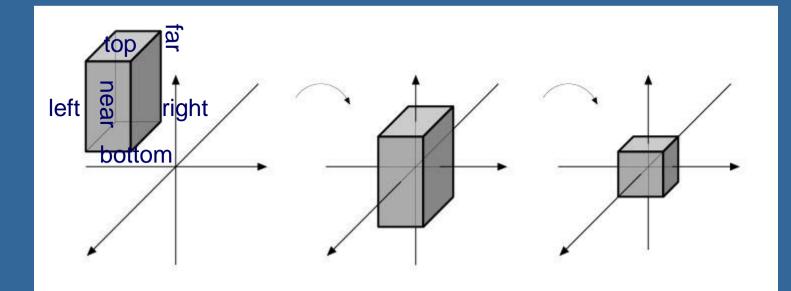




Orthogonal projection

The "unitcube projection" is invertible
Simple to derive

Just a translation and scale



What about those homogenenous coordinates?

$$\mathbf{p} = \begin{pmatrix} p_x & p_y & p_z & p_w \end{pmatrix}^T$$

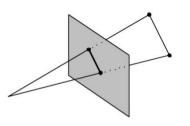
p_w=0 for vectors, and p_w=1 for points
What if p_w is **not** 1 or 0?

• Solution is to divide all components by pw

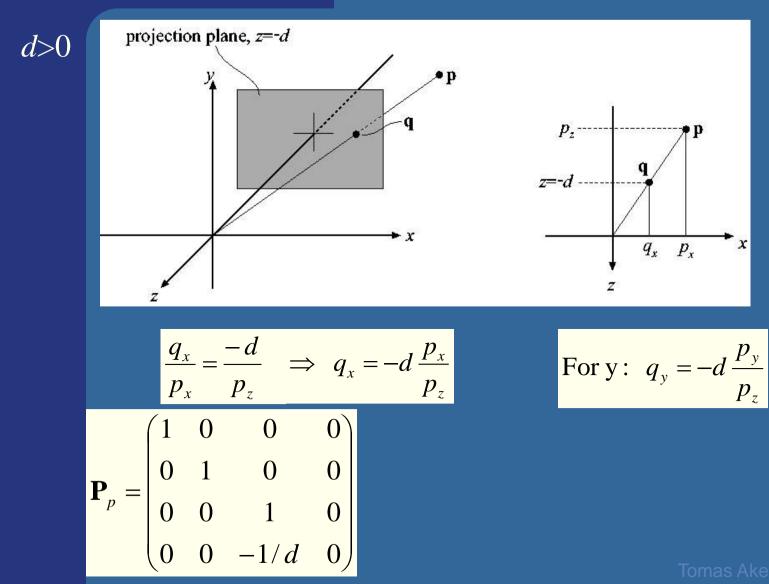
$$\mathbf{p} = \left(p_x / p_w \quad p_y / p_w \quad p_z / p_w \quad 1 \right)^T$$

Gives a point again!

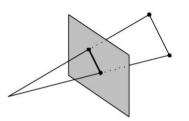
 Can be used for projections, as we will see



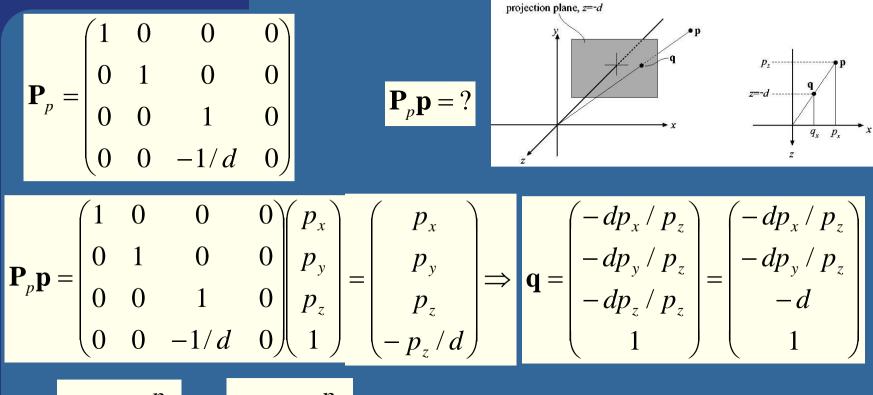
Perspective projection



r



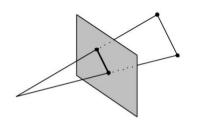
Perspective projection



$$q_x = -d \frac{p_x}{p_z}$$

$$q_y = -d \frac{p_y}{p_z}$$

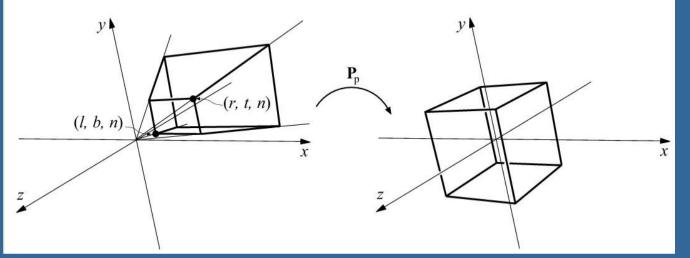
 The "arrow" is the homogenization process



Perspective projection

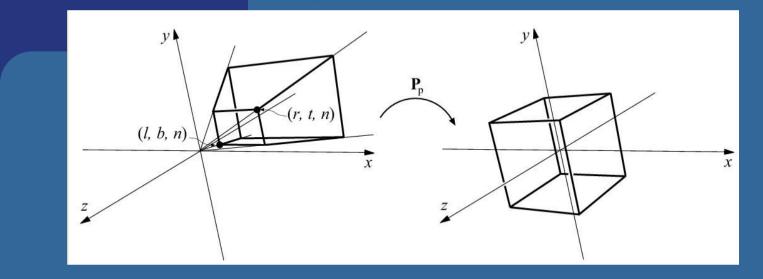
- Again, the determinant is 0 (not invertible)
- To make the rest of the pipeline the same as for orhogonal projection:

- project into unit-cube



Not much different from P_p
Do not collapse z-coord to a plane

Understanding the projection matrix



$$\mathbf{P}_{p}\mathbf{p} = \begin{pmatrix} s_{x} & 0 & a & 0 \\ 0 & s_{y} & b & 0 \\ 0 & 0 & s_{z} & c \\ 0 & 0 & -1/d & 0 \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} s_{x}p_{x} + ap_{z} \\ s_{y}p_{y} + bp_{z} \\ s_{z}p_{z} + c \\ -p_{z}/d \end{pmatrix} \Rightarrow \mathbf{q} = \begin{pmatrix} -(d_{1}p_{x}/p_{z}) + a' \\ -(d_{2}p_{y}/p_{z}) + b' \\ -(d_{3}p_{z} + c)/p_{z} \\ 1 \end{pmatrix}$$

- Scaling
- Skew
- Keep z-info

Perspective projection matrices
See "Från Värld till Skärm" secion 4 for more details.

• BREAK...

Tomas Akenine-Mőller © 2002

Quick Repetition of Vector Algebra

Length of vector:
$$\|\mathbf{x}\| = \sqrt{(x^2 + y^2 + z^2)}$$

Normalizing a vector: $\hat{\mathbf{x}} = \frac{\mathbf{x}}{\sqrt{(x^2 + y^2 + z^2)}} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$ Normal: $\mathbf{n} = (\mathbf{v}_1 - \mathbf{v}_0) \times (\mathbf{v}_2 - \mathbf{v}_0)$ (usualy needs to be normalized as well)

Cross Product:

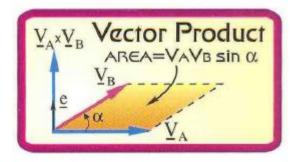
- Perpendicular vector, Area
- sin α : sin $\alpha = \frac{\mathbf{v}_a \times \mathbf{v}_b}{\|\mathbf{v}_a\| \|\mathbf{v}_b\|}$

$$\mathbf{u} \times \mathbf{v} = \hat{\mathbf{x}} \left(u_y \ v_z - u_z \ v_y \right) + \hat{\mathbf{y}} \left(u_z \ v_x - u_x \ v_z \right) + \hat{\mathbf{z}} \left(u_x \ v_y - u_y \ v_x \right),$$

Dot product: $\cos \alpha = \frac{\mathbf{v}_a \bullet \mathbf{v}_b}{\|\mathbf{v}_a\| \|\mathbf{v}_b\|}$

$$\mathbf{v}_a \bullet \mathbf{v}_b = (a_x b_x + a_y b_y + a_z b_z)$$

$$\underline{\underline{V}}_{A} \times \underline{\underline{V}}_{B} = \begin{cases} \underline{\underline{i}} & \underline{\underline{j}} & \underline{\underline{k}} \\ V_{AX} & V_{AY} & V_{AZ} \\ V_{BX} & V_{BY} & V_{BZ} \end{cases}$$



Triple Scalar Product

The magnitude of the triple scalar product is equal to the volume of the parallelepiped formed by the three vectors $\underline{V}_A, \underline{V}_B, \underline{V}_C: \underline{V}_A \cdot (\underline{V}_B \times \underline{V}_C)$.

Triple Scalar Product

$$\underline{V}_{B} \times \underline{V}_{C}$$

 $\underline{V}_{A} \xrightarrow{\prime}$
 $\underline{V}_{A} \xrightarrow{\prime}$
 $\underline{V}_{A} \xrightarrow{\prime}$
 $\underline{V}_{B} \xrightarrow{\prime} \underline{V}_{C}$
 $\underline{V}_{C} \xrightarrow{\prime} \underline{V}_{C}$
 \underline{V}_{C}
 $\underline{V}_{C} \xrightarrow{\prime} \underline{V}_{C}$
 $\underline{V}_{C} \xrightarrow{\cdot} \underline{V}_{C}$
 $\underline{V}_{C} \xrightarrow{$

Ray/Plane Intersections

{

- Ray: $r(t) = \mathbf{0} + t\mathbf{d}$
- Plane: $n \cdot x + d = 0$; $d = -n \cdot p_0$
- Set $\mathbf{x}=\mathbf{r}(\mathbf{t})$: $\mathbf{n} \cdot (\mathbf{o} + t\mathbf{d}) - \mathbf{d} = 0$ $\mathbf{n} \cdot \mathbf{o} + t(\mathbf{n} \cdot \mathbf{d}) - \mathbf{d} = 0$

 $\mathbf{t} = (\mathbf{d} - \mathbf{n} \bullet \mathbf{o}) / (\mathbf{n} \bullet \mathbf{d})$

• 0

d

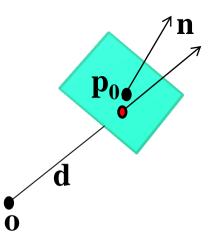
p₀

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)

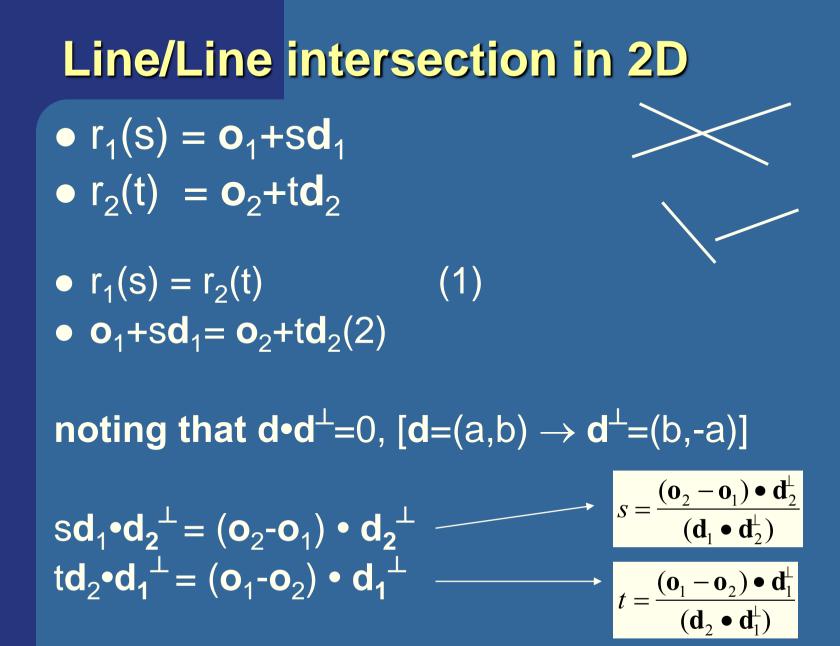
float t=(d-n.dot(o)) / (n.dot(dir));
return o + d*t;

Ray/Plane Intersections

- Ray: r(t)=**o**+t**d**
- Plane: $n \cdot x + d = 0$; $d = -n \cdot p_0$
- Set $\mathbf{x}=\mathbf{r}(\mathbf{t})$: $\mathbf{n} \cdot (\mathbf{o} + t\mathbf{d}) - \mathbf{d} = 0$ $\mathbf{n} \cdot \mathbf{o} + t(\mathbf{n} \cdot \mathbf{d}) - \mathbf{d} = 0$ $\mathbf{t} = (\mathbf{d} - \mathbf{n} \cdot \mathbf{o}) / (\mathbf{n} \cdot \mathbf{d})$



Note: for t to be the distance expressed in the used unit, **d** must be of unit length.



Line/Line intersection in 3D

- $r_1(s) = o_1 + sd_1$
- $r_2(t) = o_2 + t d_2$
- $r_1(s) = r_2(t)$ (1)(2)
- $o_1 + sd_1 = o_2 + td_2$

noting that d x d=0

$$\|(\mathbf{d}_1 \times \mathbf{d}_2)\|^2 = 0$$
 means parallel lines

 $sd_1 x d_2 = (o_2 - o_1) x d_2$ $td_2 x d_1 = (o_1 - o_2) x d_1$

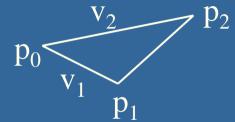
s, t correspond to closest points

 $(d_1 \times d_2) \cdot (d_1 \times d_2) = ((o_2 - o_1) \times d_2) \cdot (d_1 \times d_2)$ t $(d_2 \times d_1) \cdot (d_2 \times d_1) = ((o_1 - o_2) \times d_1) \cdot (d_2 \times d_1)$

$$s = \frac{\det(\mathbf{o}_2 - \mathbf{o}_1, \mathbf{d}_2, \mathbf{d}_1 \times \mathbf{d}_2)}{\left\| (\mathbf{d}_1 \times \mathbf{d}_2) \right\|^2}$$

$$t = \frac{\det(\mathbf{o}_2 - \mathbf{o}_1, \mathbf{d}_1, \mathbf{d}_1 \times \mathbf{d}_2)}{\left\| (\mathbf{d}_1 \times \mathbf{d}_2) \right\|^2}$$

Area and Perimeter



For polygon p_0 , $p_1...p_n$ Perimeter = omkrets = sum of length of each edge in 2D and 3D:

$$O = \sum_{i=0}^{n-1} \|p_{i+1} - p_i\| = \sum_{i=0}^{n-1} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 + (z_{i+1} - z_i)^2}$$

Area in 2D: $A = \frac{1}{2} \left| \sum_{i=1}^{n-1} \left\langle x_{i} y_{i+1} - x_{i+1} y_{i} \right\rangle \right|$

0

We can understand the formula from using Greens theorem: integrating over border to get area $A_{triangle} = \frac{1}{2} (v_1 \times v_2)$ Choose arbitrary point to integrate from, e.g. Origin (0,0,0)Works for non-convex polygons as well

Volume in 3D

The same trick for computing area in 2D can be used to easily compute the volume in 3D for triangulated objects

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration

- For all backfacing triangles, add volume
- For all frontfacing triangles, subtract volume

Works for non-convex polygons as well

 $V_{object} = \frac{1}{3!} \sum_{i=1}^{n} \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$

$$V_{tetrahedron} = \frac{1}{3!} |\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})| = \frac{1}{3!} |\det(\mathbf{a}, \mathbf{b}, \mathbf{c})| \qquad \begin{array}{l} a = p_1 \text{-origin} \\ b = p_2 \text{-origin} \\ c = p_3 \text{-origin} \end{array}$$

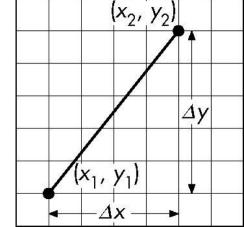
The sign of the determinant will automatically handle positive and negative contribution

where

Scan Conversion of Line Segments

- Start with line segment in window coordinates with integer values for endpoints
- Assume implementation has a write_pixel function y = kx + m $k = \frac{\Delta y}{\Delta x}$

DDA Algorithm



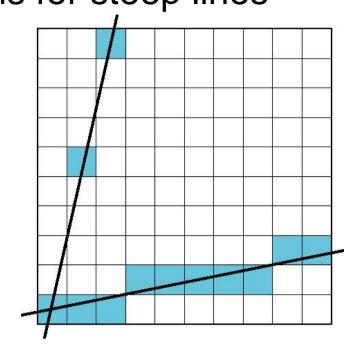
- <u>Digital</u> <u>Differential</u> <u>Analyzer</u>
 - –DDA was a mechanical device for numerical solution of differential equations
 - -Line y=kx+ m satisfies differential equation

 $dy/dx = k = \Delta y/\Delta x = y_2 - y_1/x_2 - x_1$

• Along scan line $\Delta x = 1$

Problem

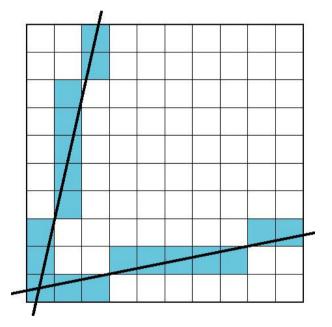
DDA = for each x plot pixel at closest y
 –Problems for steep lines



Using Symmetry

- Use for $1 \ge k \ge 0$
- For k > 1, swap role of x and y

-For each y, plot closest x



- The problem with DDA is that it uses floats which was slow in the old days
- Bresenhams algorithm only uses integers

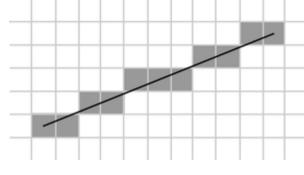
Bresenham's line drawing algorithm

- The line is drawn between two points (x_0, y_0) •
- and (x_1, y_1) Slope $k = \frac{(y_1 y_0)}{(x_1 x_0)}$ • (y = kx + m)
- Each time we step 1 in x-direction, we should increment y with k. • Otherwise the error in y increases with k.
- If the error surpasses 0.5, the line has become closer to the next y-• value, so we add 1 to y simultaneously decreasing the error by 1

```
function line(x0, x1, y0, y1)
   int deltax := abs(x1 - x0)
   int deltay := abs(y1 - y0)
   real error := 0
   real deltaerr := deltay / deltax
   int y := y0
   for x from x0 to x1
      plot(x,y)
       error := error + deltaerr
      if error > 0.5
          y := y + 1
          error := error - 1.0
```

See also http://en.wikipedia.org/wiki/Bresenham's line algorithm

Bresenham's line drawing algorithm



- Now, convert algorithm to only using integer computations
- The trick we use is to multiply the fractional numbers above by (x₁-x₀), which enables us to express them as integers.
- The only problem remaining is the constant 0.5—to deal with this, we multiply both sides of the inequality by 2

Old float version:

New integer version:

```
function line(x0, x1, y0, y1)

int deltax := abs(x1 - x0)

int deltay := abs(y1 - y0)

real error := 0

real deltaerr := deltay / deltax

int y := y0

for x from x0 to x1

plot(x,y)

error := error + deltaerr

if error \ge 0.5

y := y + 1

error := error - 1.0
```

function line(x0, x1, y0, y1) int deltax := abs(x1 - x0)int deltay := abs(y1 - y0)real error := 0 real deltaerr := deltay int y := y0 for x from x0 to x1 plot(x,y) error := error + deltaerr if 2*error \geq deltax y := y + 1 error := error - deltax

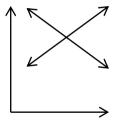
Complete Bresenham's line drawing algorithm

function line(x0, x1, y0, y1)*boolean* steep := abs(y1 - y0) > abs(x1 - x0)if steep then swap(x0, y0)swap(x1, y1)if $x_0 > x_1$ then swap(x0, x1)swap(y0, y1)*int* deltax := x1 - x0*int* deltay := abs(y1 - y0)*int* error = 0*int* ystep int y := y0if $y_0 < y_1$ then ystep := 1 else ystep := -1 for x from x0 to x1 if steep then plot(y,x) else plot(x,y)error := error + deltayif $2 \times \text{error} \ge \text{deltax}$ y := y + ysteperror := error - deltax

The first case is allowing us to draw lines that still slope downwards, but head in the opposite direction. I.e., swapping the initial points if x0 > x1.

To draw lines that go up, we check if y0 >= y1; if so, we step y by -1 instead of 1.

To be able to draw lines with a slope less than one, we take advantage of the fact that a steep line can be reflected across the line y=x to obtain a line with a small slope. The effect is to switch the x and y variables.



You need to know

- How to create a simple Scaling matrix, rotation matrix, translation matrix and orthogonal projection matrix
- Change of frames (creating model-to-view matrix)
- Understand how quaternions are used
- Understanding of Euler transforms + gimbal lock
- DDA line drawing algorithm
- Understand what is good with Bresenhams line drawing algorithm
- How to do line/line intersection test

The following slides are simply extra noncompulsory material that explains the content of the lecture in a different way.

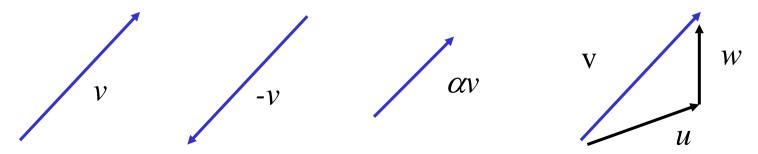
Most of the following slides are from Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Scalars

- Need three basic elements in geometry -Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vector Operations

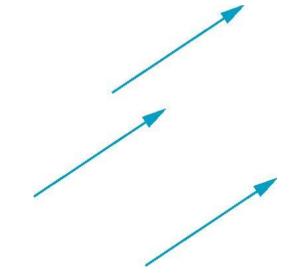
- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types. Every vector can be multiplied by a scalar.
- There is a zero vector
 - -Zero magnitude, undefined orientation
- The sum of any two vectors is a vector



Vectors Lack Position

• These vectors are identical Same length and magnitude

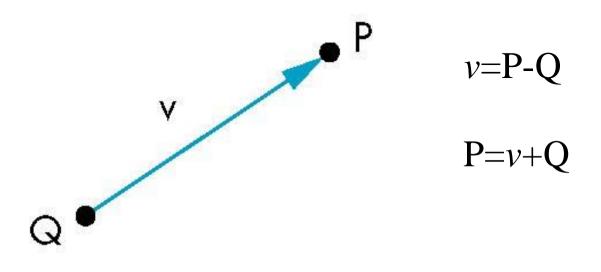
-Same length and magnitude



• Vectors insufficient for geometry -Need points

Points

- •Location in space
- Operations allowed between points and vectors
 - -Point-point subtraction yields a vector
 - -Equivalent to point-vector addition

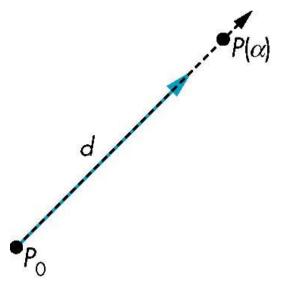


Affine Spaces

- Point + a vector space
- Operations
 - -Vector-vector addition
 - -Scalar-vector multiplication
 - -Point-vector addition
 - -Scalar-scalar operations
- For any point define
 - $-1 \bullet \mathbf{P} = \mathbf{P}$
 - $-0 \bullet \mathbf{P} = \mathbf{0}$ (zero vector)

Lines

- Consider all points of the form
 - $-P(\alpha)=P_0+\alpha \mathbf{d}$
 - -Set of all points that pass through P_0 in the direction of the vector **d**



Parametric Form

- This form is known as the parametric form of the line
 - -More robust and general than other forms
 - -Extends to curves and surfaces
- Two-dimensional forms
 - -Explicit: y = kx + m
 - -Implicit: ax + by + c = 0

–Parametric:

$$\begin{aligned} \mathbf{x}(\alpha) &= \alpha \mathbf{x}_0 + (1 - \alpha) \mathbf{x}_1 \\ \mathbf{y}(\alpha) &= \alpha \mathbf{y}_0 + (1 - \alpha) \mathbf{y}_1 \end{aligned}$$

Rays and Line Segments

• If $\alpha \ge 0$, then P(α) is the *ray* leaving P₀ in the direction **d**

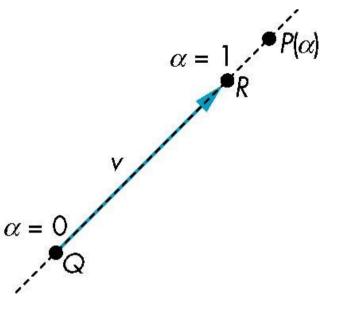
If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$

$$=\alpha \mathbf{R} + (1-\alpha)\mathbf{Q}$$

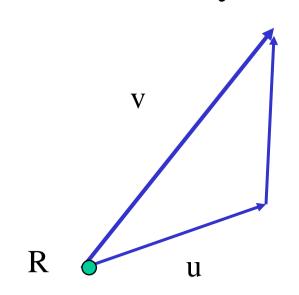
For $0 <= \alpha <= 1$ we get all the points on the *line segment*

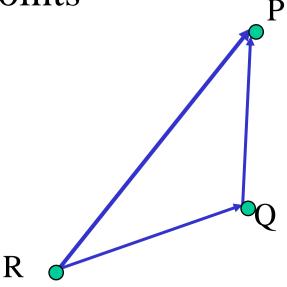
joining R and Q



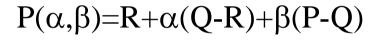
Planes

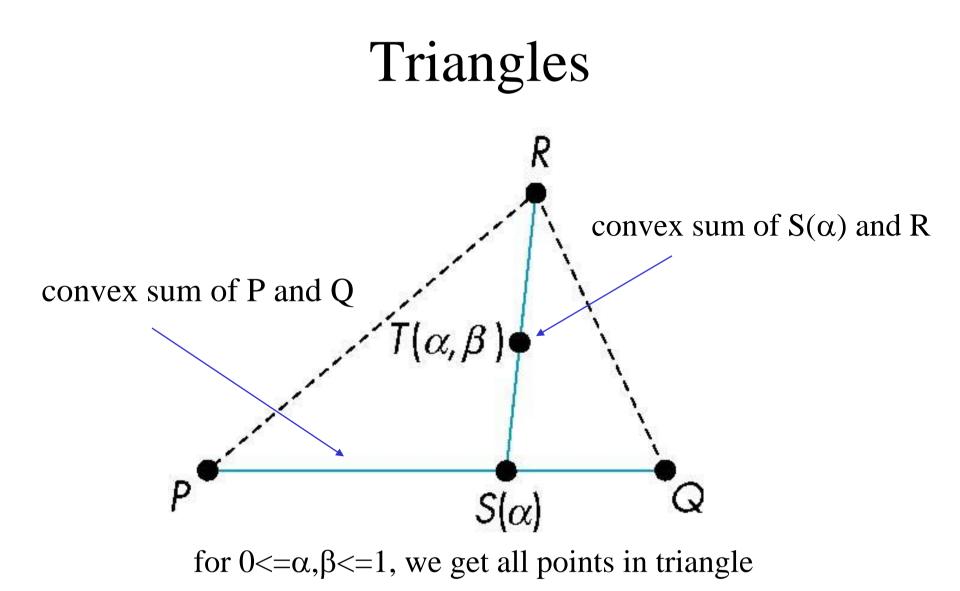
• A plane can be defined by a point and two vectors or by three points





 $P(\alpha,\beta)=R+\alpha u+\beta v$





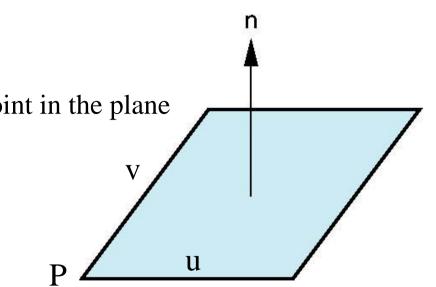
Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point/vector form
 - $-P(\alpha,\beta)=R+\alpha u+\beta v$

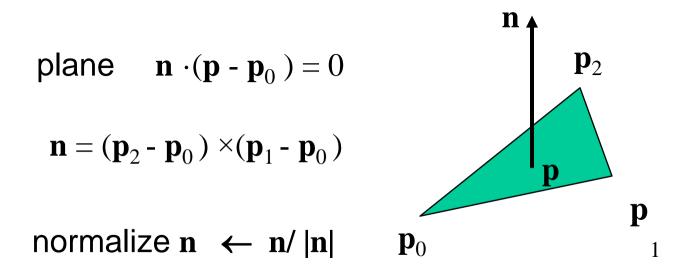
we know we can use the cross product to find

 $-n = u \times v$

- Plane equation:
 - $-\mathbf{n}\cdot\mathbf{x}-\mathbf{d}=\mathbf{0},$
 - where $d = -n \cdot p$ and p is any point in the plane



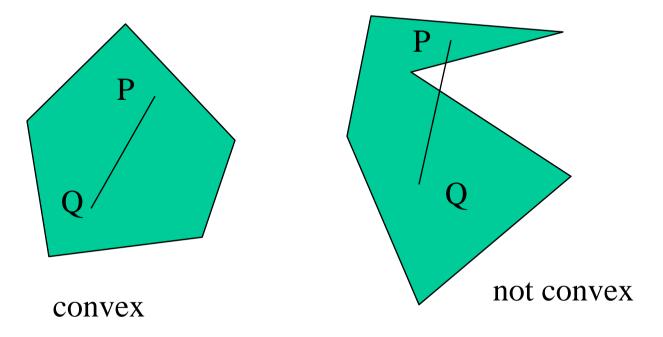
Normal for Triangle



Note that right-hand rule determines outward face

Convexity

• An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the object



Affine Sums

- Consider the "sum"
- $\begin{array}{l} P=\alpha_1P_1+\alpha_2P_2+\ldots+\alpha_nP_n\\ Can show by induction that this sum makes sense iff \end{array}$

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

- in which case we have the *affine sum* of the points P_1, P_2, \dots, P_n
- If, in addition, $\alpha_i \ge 0$, we have the *convex hull* of P_1, P_2, \dots, P_n

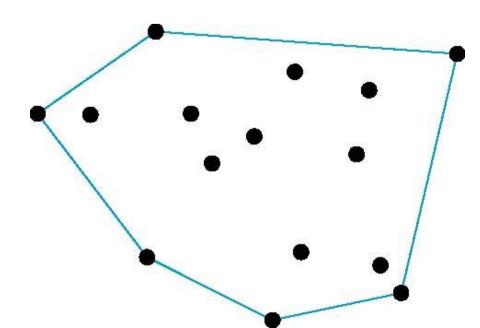
Convex Hull

Consider the linear combination

- $P = \alpha_1 P_1 + \alpha_2 P_2 + \ldots + \alpha_n P_n$
- If $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$

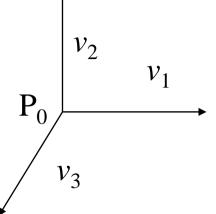
- (in which case we have the *affine sum* of the points P_1, P_2, \dots, P_n) and if $\alpha_i \ge 0$, we have the *convex hull* of P_1, P_2, \dots, P_n

• Smallest convex object containing P₁,P₂,....P_n



Frames

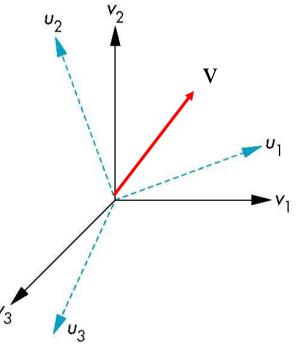
- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*



Representing one basis in terms of another

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms $u_2 = \frac{v_2}{r_1}$

 $u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$ $u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$ $u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$



Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

 $a = M^T b$

Translation

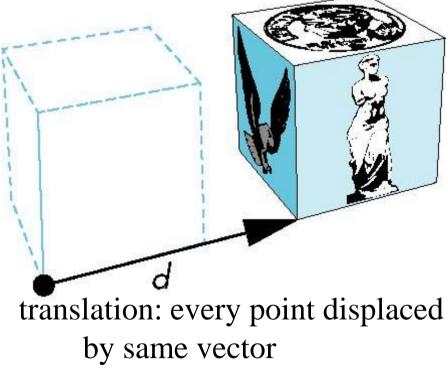
• Move (translate, displace), a point to a new location

• Displacement determined by a vector d —Three degrees of freedom —P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object



Translation Using Representations

```
Using the homogeneous coordinate representation in some frame
```

```
\mathbf{p} = [x y z 1]^T
       p' = [x' y' z' 1]^T
       \mathbf{d} = [\mathrm{dx} \mathrm{dy} \mathrm{dz} \mathrm{0}]^{\mathrm{T}}
Hence \mathbf{p'} = \mathbf{p} + \mathbf{d} or
       x'=x+d_x
      y'=y+d_y
z'=z+d_z
```

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix **T** in homogeneous coordinates **p'=Tp** where $\begin{bmatrix}
1 & 0 & 0 & d_x \\
0 & 1 & 0 & d_y \\
0 & 0 & 1 & d_z \\
0 & 0 & 0 & 1
\end{bmatrix}$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point [x y z] is given as $\mathbf{p} = [x' y' z' w]^T = [wx wy wz w]^T$ We return to a three dimensional point (for w≠0) by x \leftarrow x'/w y \leftarrow y'/w z \leftarrow z'/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates and Computer Graphics

- •Homogeneous coordinates are key to all computer graphics systems
 - -All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - –Hardware pipeline works with 4 dimensional representations
 - -For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - -For perspective we need a *perspective division*

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - -Equivalent to rotation in two dimensions in planes of constant z

x'=x $\cos \theta$ -y $\sin \theta$ y' = x $\sin \theta$ + y $\cos \theta$ z' =z

-or in homogeneous coordinates

 $p' = R_{Z}(\theta)p$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

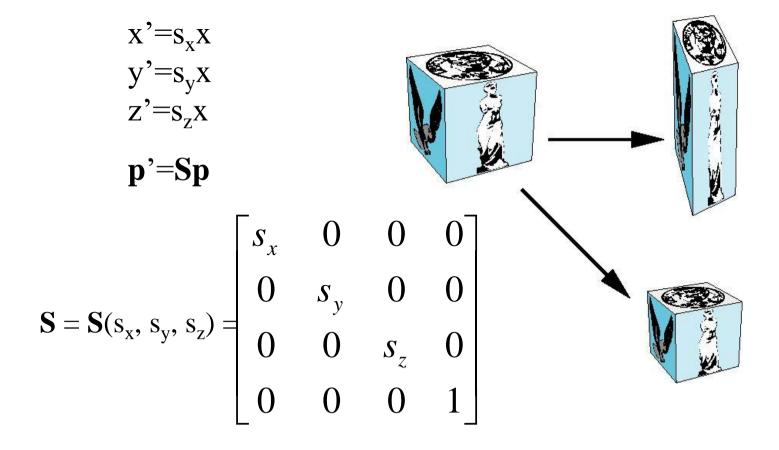
Rotation about x and y axes

- Same argument as for rotation about *z* axis
 - -For rotation about x axis, x is unchanged
 - -For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

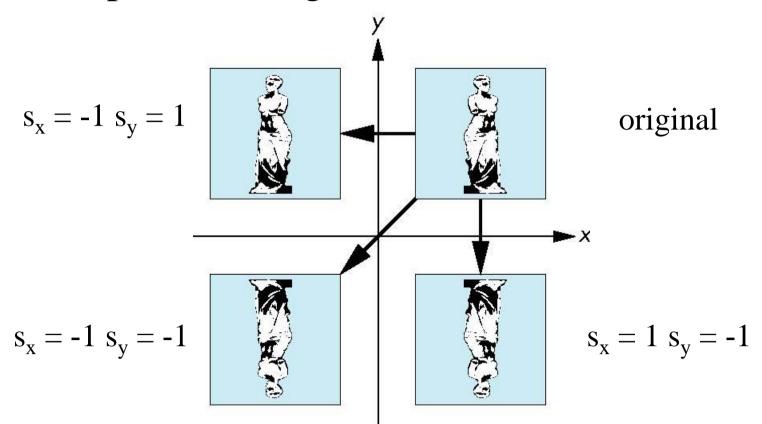
Scaling

Expand or contract along each axis (fixed point of origin)



Reflection

corresponds to negative scale factors



Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - -Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - -Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$

 $\mathbf{R}^{-1}(\mathbf{\theta}) = \mathbf{R}^{\mathrm{T}}(\mathbf{\theta})$

-Scaling: S⁻¹(s_x , s_y , s_z) = S(1/ s_x , 1/ s_y , 1/ s_z)

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent $\mathbf{p}' = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$
- Note many references use column matrices to represent points. In terms of column matrices

 $\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$

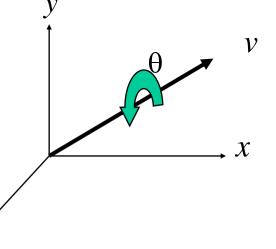
General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the *x*, *y*, and *z* axes

 $\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \mathbf{R}_{y}(\theta_{y}) \mathbf{R}_{x}(\theta_{x})$

 $\theta_{x} \theta_{y} \theta_{z}$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles



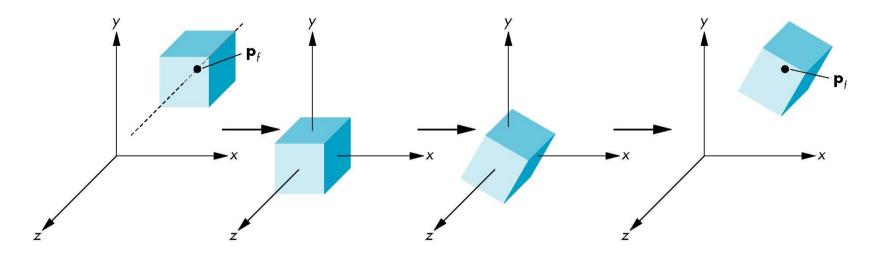
Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

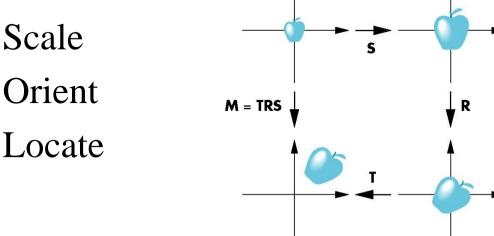
Move fixed point back

 $\mathbf{M} = \mathbf{T}(p_f) \ \mathbf{R}(\theta) \ \mathbf{T}(-p_f)$



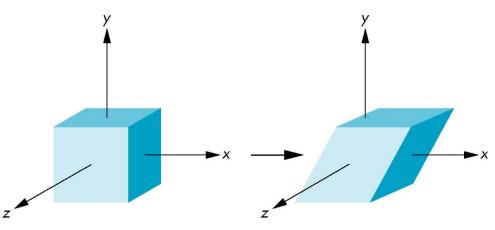
Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- •We apply an *instance transformation* to its vertices to



Shear

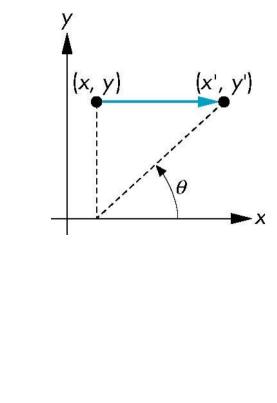
- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions



Shear Matrix

Consider simple shear along x axis

 $x' = x + y \cot \theta$ y' = yZ' = Z $\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$



OpenGL Transformations

Objectives

- •Learn how to carry out transformations in OpenGL
 - -Rotation
 - -Translation
 - -Scaling
- Introduce OpenGL matrix modes
 - -Model-view

-Projection

Clarification (by Ulf)

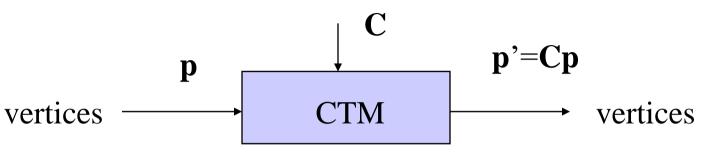
• Note that the following slides explain the old deprecated (before OpenGL 3.0) way to modify the modelview matrix and projection matrix in OpenGL. These were fixed function built in OpenGL-matrices. Today, we instead send the modelview and projection matrix ourselves to the vertex shader. But the principles of the following slides still apply. We just have to create and send the matrices to the shaders manually instead of having them built in.

OpenGL Matrices

- In OpenGL matrices are part of the state
- Multiple types
 - -Model-View (**GL_MODELVIEW**)
 - -Projection (**GL_PROJECTION**)
 - -Texture (**GL_TEXTURE**) (ignore for now)
 - -Color(**GL_COLOR**) (ignore for now)
- Single set of functions for manipulation
- Select which to manipulated by
 - -glMatrixMode(GL_MODELVIEW);
 - -glMatrixMode(GL_PROJECTION);

Current Transformation Matrix (CTM)

- Conceptually there is a 4 x 4 homogeneous coordinate matrix, the *current transformation matrix* (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit



CTM operations

• The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: $C \leftarrow I$ Load an arbitrary matrix: $C \leftarrow M$

Load a translation matrix: $\mathbf{C} \leftarrow \mathbf{T}$ Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$ Load a scaling matrix: $\mathbf{C} \leftarrow \mathbf{S}$

Postmultiply by an arbitrary matrix: $C \leftarrow CM$ Postmultiply by a translation matrix: $C \leftarrow CT$ Postmultiply by a rotation matrix: $C \leftarrow CR$ Postmultiply by a scaling matrix: $C \leftarrow CS$

Rotation about a Fixed Point

Start with identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$ Move fixed point to origin: $\mathbf{C} \leftarrow \mathbf{CT}$ Rotate: $\mathbf{C} \leftarrow \mathbf{CR}$ Move fixed point back: $\mathbf{C} \leftarrow \mathbf{CT}^{-1}$

Result: $C = TR T^{-1}$ which is **backwards**.

This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $C = T^{-1} R T$ so we must do the operations in the following order

$$C \leftarrow I$$

$$C \leftarrow CT^{-1}$$

$$C \leftarrow CR$$

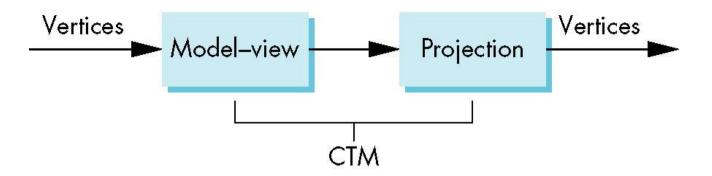
$$C \leftarrow CT$$

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

CTM in OpenGL

- OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM
- Can manipulate each by first setting the correct matrix mode



Rotation, Translation, Scaling

Load an identity matrix:

```
glLoadIdentity()
```

Multiply on right:

glRotatef(theta, vx, vy, vz)
theta in degrees, (vx, vy, vz) define axis of rotation
glTranslatef(dx, dy, dz)
glScalef(sx, sy, sz)

Each has a float (f) and double (d) format (glScaled)

Example

• Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

• Remember that last matrix specified in the program is the first applied

Arbitrary Matrices

• Can load and multiply by matrices defined in the application program

glLoadMatrixf(m) glMultMatrixf(m)

- The matrix **m** is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by <u>columns</u>
- In glMultMatrixf, m multiplies the existing matrix on the right

Matrix Stacks

• In many situations we want to save transformation matrices for use later

-Traversing hierarchical data structures (Chapter 10)

-Avoiding state changes when executing display lists

- OpenGL maintains stacks for each type of matrix
 - -Access present type (as set by glMatrixMode) by
 glPushMatrix()
 glPopMatrix()

Reading Back Matrices

• Can also access matrices (and other parts of the state) by *query* functions

glGetIntegerv glGetFloatv glGetBooleanv glGetDoublev glIsEnabled

• For matrices, we use as

```
double m[16];
glGetFloatv(GL_MODELVIEW, m);
```

Using the Model-view Matrix

- In OpenGL the model-view matrix is used to -Position the camera
 - Can be done by rotations and translations but is often easier to use gluLookAt

-Build models of objects

• The projection matrix is used to define the view volume and to select a camera lens

Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components **i**, **j**, **k** $q=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - -Model-view matrix \rightarrow quaternion
 - -Carry out operations with quaternions
 - -Quaternion \rightarrow Model-view matrix

Computer Viewing

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts

University of New Mexico

Objectives

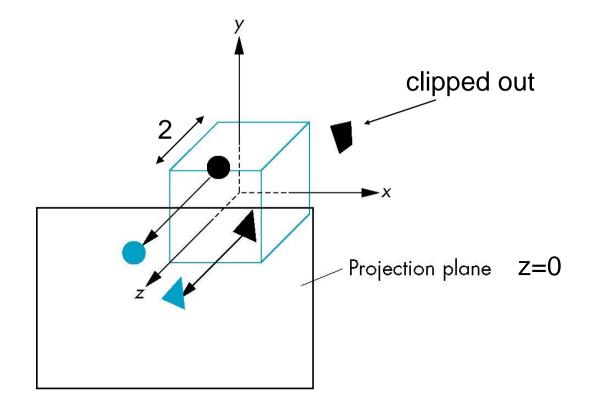
- Introduce the mathematics of projection
- Introduce OpenGL viewing functions
- Look at alternate viewing APIs

Computer Viewing

- There are three aspects of the viewing process, all of which are implemented in the pipeline,
 - -Positioning the camera
 - Setting the model-view matrix
 - -Selecting a lens
 - Setting the projection matrix
 - -Clipping
 - Setting the view volume
 - (default is unit cube, R³, [-1,1])

Default Projection

Default projection is orthogonal



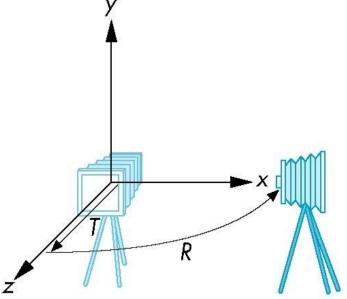
Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - –Move the camera in the positive z direction
 - Translate the camera frame
 - -Move the objects in the negative z direction
 - Translate the world frame
- •Both of these views are equivalent and are determined by the model-view matrix
 - -Want a translation (glTranslatef(0.0,0.0,-d);)

-d > 0

Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - -Rotate the camera
 - -Move it away from origin
 - -Model-view matrix C = TR



OpenGL code

• Remember that last transformation specified is first to be applied

```
glMatrixMode(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(90.0, 0.0, 1.0, 0.0);
```

The LookAt Function

- The GLU library contains the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Still need to initialize

-Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes glMatrixMode(GL_MODELVIEW): glLoadIdentity(); gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0);

gluLookAt

glLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz) (up_x, up_y, up_z) (up_x, up_y, up_z)

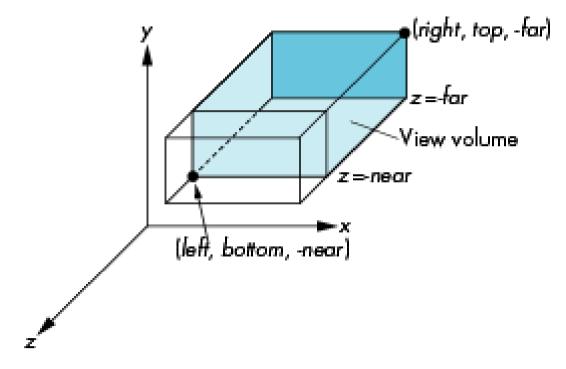
(eye_x, eye_y, eye_z)

Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - -View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - -Yaw, pitch, roll
 - -Elevation, azimuth, twist
 - -Direction angles

OpenGL Orthogonal Viewing

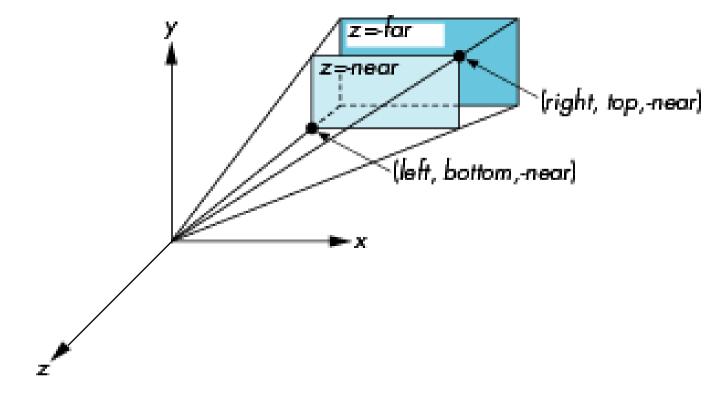
glOrtho(left,right,bottom,top,near,far)



near and far measured from camera

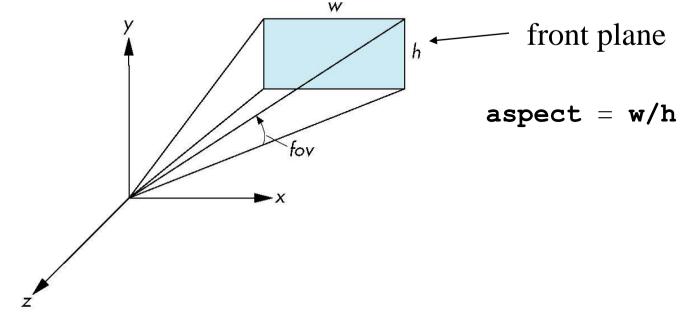
OpenGL Perspective

glFrustum(left,right,bottom,top,near,far



Using Field of View

- With **glFrustum** it is often difficult to get the desired view
- •gluPerpective(fovy, aspect, near, far) often provides a better interface



Projections explained differently

- Read the following slides about orthogonal and perspective projections by your selves
- They present the same thing, but explained differently

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
 - -All other views are converted to the default view by transformations that determine the projection matrix
 - -Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

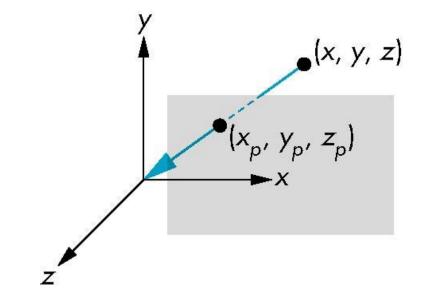
default orthographic projection

 $\mathbf{p}_{p} = \mathbf{M}\mathbf{p}$ $\mathbf{y}_{p} = \mathbf{y}$ $\mathbf{z}_{p} = 0$ $\mathbf{W}_{p} = 1$ $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

In practice, we can let M = I and set the *z* term to zero later

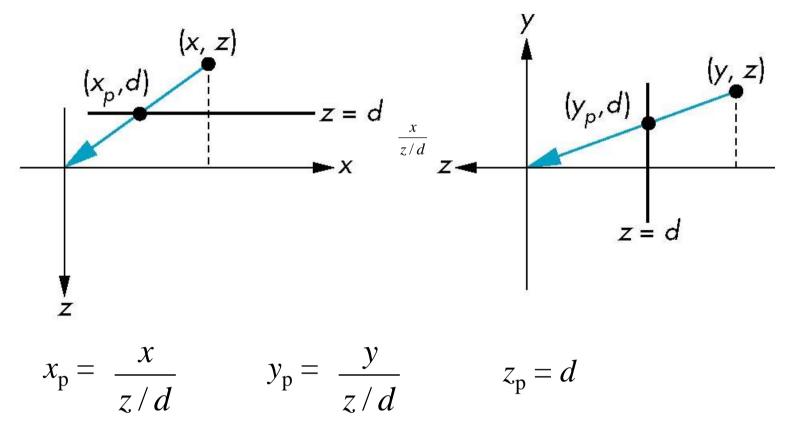
Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0



Perspective Equations

Consider top and side views



Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{M}\mathbf{p}$$
 where
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$
$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective Division

- However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

$$x_{p} = \frac{x}{z/d}$$
 $y_{p} = \frac{y}{z/d}$ $z_{p} = d$

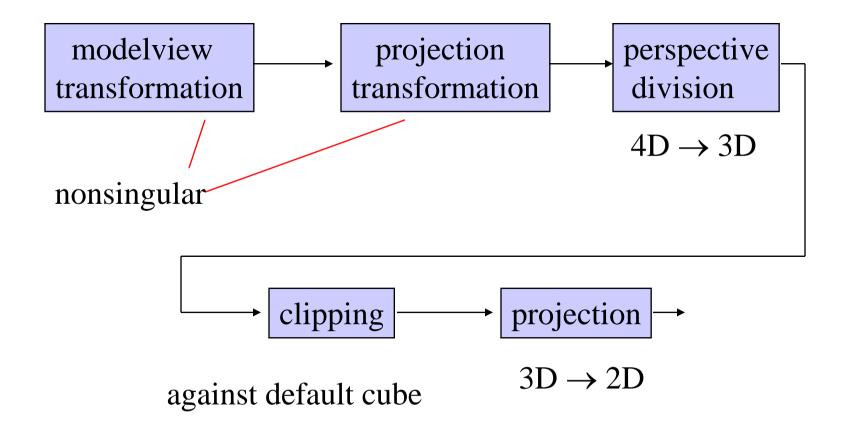
the desired perspective equations

•We will consider the corresponding clipping volume with the OpenGL functions

Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Pipeline View



Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations

-Both these transformations are nonsingular

-Default to identity matrices (orthogonal view)

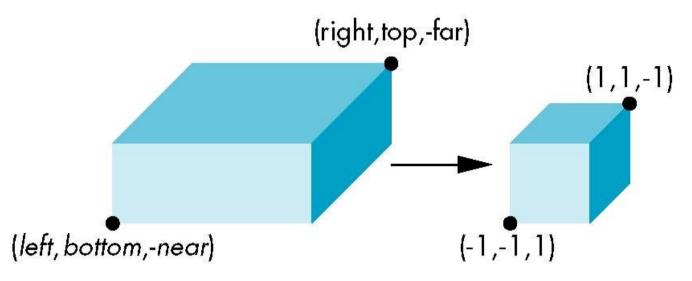
- •Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end

-Important for hidden-surface removal to retain depth information as long as possible

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization \Rightarrow find transformation to convert specified clipping volume to default



Orthogonal Matrix

• Two steps

-Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

-Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

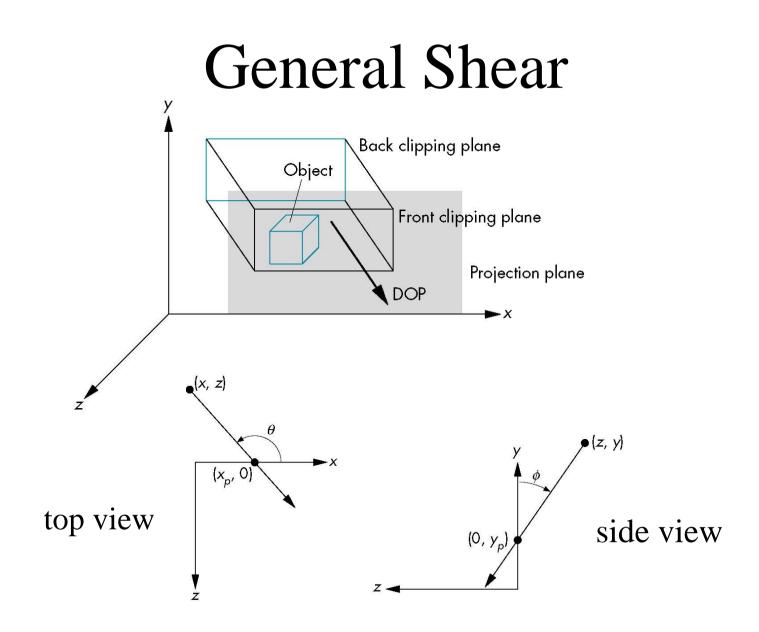
Final Projection

- Set *z* =0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Hence, general orthogonal projection in 4D is

 $\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{ST}$



Shear Matrix

xy shear (z values unchanged)

$$\mathbf{H}(\theta, \phi) = \begin{bmatrix} 1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

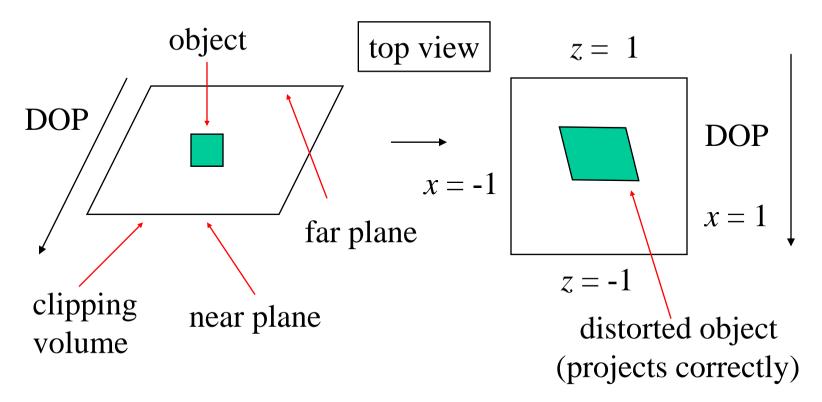
Projection matrix

 $\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{H}(\theta, \phi)$

General case: $P = M_{orth} STH(\theta, \phi)$

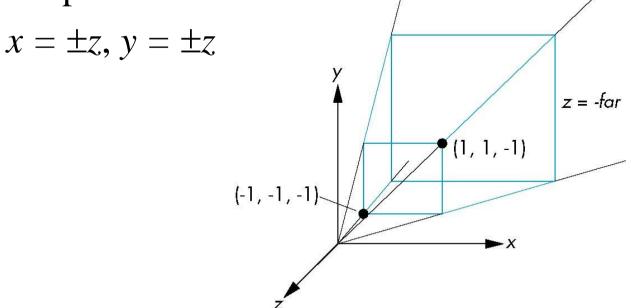
Effect on Clipping

 The projection matrix P = STH transforms the original clipping volume to the default clipping volume



Simple Perspective

Consider a simple perspective with the COP (=center of projection) at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes



Perspective Matrices

Simple projection matrix in homogeneous coordinates $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$

Note that this matrix is independent of the far clipping plane

Generalization

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

after perspective division, the point (x, y, z, 1) goes to

$$x'' = \frac{x}{z}$$

$$y'' = \frac{y}{z}$$

$$Z'' = -(\alpha + \beta/z)$$

which projects orthogonally to the desired point regardless of α and β

Picking α and β

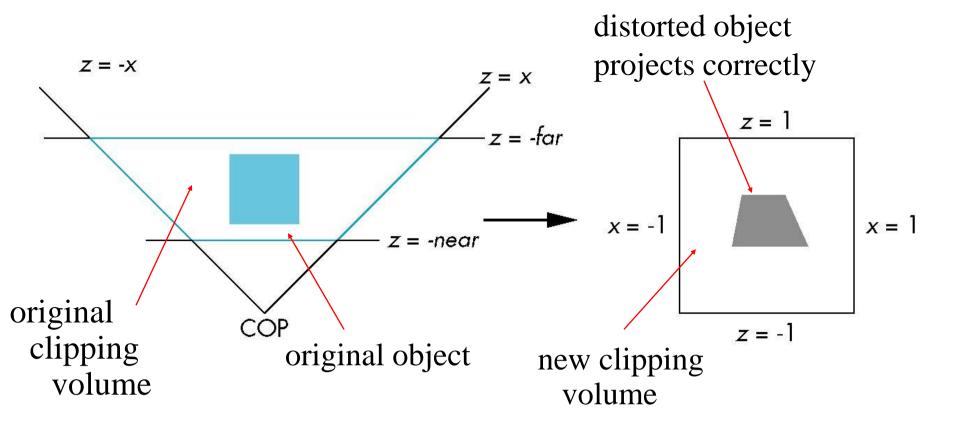
If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$
$$\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to z = -1the far plane is mapped to z = 1and the sides are mapped to $x = \pm 1$, $y = \pm 1$

Hence the new clipping volume is the default clipping volume

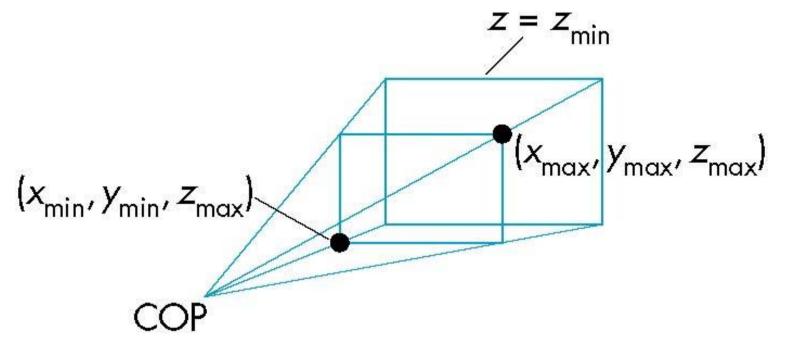
Normalization Transformation



Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' > z_2'$
- Thus hidden surface removal works if we first apply the normalization transformation
- However, the formula $z'' = -(\alpha + \beta/z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

OpenGL Perspective •glFrustum allows for an unsymmetric viewing frustum (although gluPerspective does not)



OpenGL Perspective Matrix

• The normalization in glFrustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation

our previously defined perspective matrix shear and scale

 $\mathbf{P} = \mathbf{NSH}$

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- •We simplify clipping